Boiling point
From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the boiling point of liquids. For other uses, see Boiling point (disambiguation).
The boiling point of a substance is the maximum temperature at which a liquid can remain a liquid. Adding a small amount of heat energy (latent heat of vaporization) can convert the liquid into a gas. A pure liquid may change to a gas at temperatures below the boiling point through the process of evaporation. Any change of state from a liquid to a gas at boiling point is considered vaporization. However, evaporation is a surface phenomenon, in which only molecules located near the gas/liquid surface could evaporate. Boiling on the other hand is a bulk process, so at the boiling point molecules anywhere in the liquid may be vaporized, resulting in the formation of vapor bubbles.
A somewhat clearer (and perhaps more useful) definition of boiling point is "the temperature at which the vapor pressure of the liquid equals the atmospheric pressure."
Contents [hide]
1 Saturation temperature and pressure 
2 Intermolecular interactions 
3 Properties of other elements 
4 See also 
 
[edit] Saturation temperature and pressure
A saturated liquid contains as much thermal energy as it can without boiling (or conversely a saturated vapor contains as little thermal energy as it can without condensing).
Saturation temperature means boiling point. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase. The liquid can be said to be saturated with thermal energy. Any addition of thermal energy results in a phase change.
If the pressure in a system remains constant (isobaric), a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy (heat) is removed. Similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied.
The boiling point corresponds to the temperature at which the vapor pressure of the substance equals the ambient pressure. Thus the boiling point is dependent on the pressure. Usually, boiling points are published with respect to standard pressure (101.325 kilopascals or 1 atm). At higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased ambient pressure up to the critical point, where the gas and liquid properties become identical. The boiling point cannot be increased beyond the critical point. Like wise, the boiling point decreases with decreasing ambient pressure until the triple point is reached. The boiling point cannot be reduced below the triple point.
If the Heat of Vaporization and the vapor pressure of a substance at a certain temperature is known, the normal boiling point (under standard pressure) can be calculated by: 
Where TB is the boiling point under standard pressure, R is the ideal gas constant, P0 is the vapor pressure at a given temperature, T0 is that temperature, and ΔHvap is the heat of vaporization of the substance.
Saturation Pressure, or vapor point, is the pressure for a corresponding saturation temperature at which a liquid boils into its vapor phase. Saturation pressure and saturation temperature have a direct relationship: as saturation pressure is increased so is saturation temperature.
If the temperature in a system remains constant (an isothermal system), vapor at saturation pressure and temperature will begin to condense into its liquid phase as the system pressure is increased. Similarly, a liquid at saturation pressure and temperature will tend to flash into its vapor phase as system pressure is decreased.
[edit] Intermolecular interactions
In terms of intermolecular interactions, the boiling point represents the point at which the liquid molecules possess enough thermal energy to overcome the various intermolecular attractions binding the molecules into the liquid (eg. dipole-dipole attraction, instantaneous-dipole induced-dipole attractions, and hydrogen bonds). Therefore the boiling point is also an indicator of the strength of these attractive forces.
The boiling point of water is 100 °C (212 °F) at standard pressure. On top of Mount Everest the pressure is about 260 mbar (26 kPa) so the boiling point of water is 69 °C. (156.2 °F).
For purists with a knowledge of thermodynamics, the normal boiling point of water is 99.97 degrees Celsius (at a pressure of 1 atm, i.e. 101.325 kPa). Until 1982 this was also the standard boiling point of water, but the IUPAC now recommends a standard pressure of 1 bar (100 kPa). At this slightly reduced pressure, the standard boiling point of water is 99.61 degrees Celsius.
[edit] Properties of other elements
The element with the lowest boiling point is helium. Both the boiling points of rhenium and tungsten exceed 5000 K at standard pressure. Due to the experimental difficulty of precisely measuring extreme temperatures without bias, there is some discrepancy in the literature as to whether tungsten or rhenium has the higher boiling point. (Cf. DeVoe, Howard, Thermodynamics and Chemistry. Prentice-Hall, 2001)
[edit] See also
List of elements by boiling point 
Leidenfrost effect 
flash point 
boiling delay 
critical temperature 
triple point 
boiling-point elevation 
Retrieved from "http://en.wikipedia.org/wiki/Boiling_point"
Categories: Thermodynamics | Fundamental physics concepts
ViewsArticle Discussion Edit this page History Personal toolsSign in / create account Navigation
Main page 
Contents 
Featured content 
Current events 
Random article 
interaction
About Wikipedia 
Community portal 
Recent changes 
Contact Wikipedia 
Make a donation 
Help 
Search
    Toolbox
What links here 
Related changes 
Upload file 
Special pages 
Printable version 
Permanent link
Cite this article 
In other languages
Afrikaans 
العربية 
Asturianu 
Български 
Català 
Česky 
Dansk 
Deutsch 
Eesti 
Español 
Esperanto 
Galego 
हिन्दी 
한국어 
Bahasa Indonesia 
Íslenska 
Italiano 
עברית 
Latviešu 
Lietuvių 
Lojban 
Magyar 
Македонски 
Bahasa Melayu 
Nederlands 
日本語 
Norsk (bokmål) 
Norsk (nynorsk) 
Polski 
Português 
Română 
Русский 
Simple English 
Slovenčina 
Slovenščina 
Српски / Srpski 
Srpskohrvatski / Српскохрватски 
Suomi 
Svenska 
தமிழ் 
ไทย 
Tiếng Việt 
Türkçe 
Українська 
O'zbek 
中文 
This page was last modified 13:53, 13 August 2007. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) 
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.
Privacy policy About Wikipedia Disclaimers
Subscribe to:
Post Comments (Atom)
 
No comments:
Post a Comment