Tuesday, August 14, 2007

Bismuth

Bismuth
From Wikipedia, the free encyclopedia
Jump to: navigation, search
83 lead ← bismuth → polonium
Sb

Bi

Uup
Periodic Table - Extended Periodic Table


General
Name, Symbol, Number bismuth, Bi, 83
Chemical series poor metals
Group, Period, Block 15, 6, p
Appearance lustrous pink

Standard atomic weight 208.98040(1)  g·mol−1
Electron configuration [Xe] 4f14 5d10 6s2 6p3
Electrons per shell 2, 8, 18, 32, 18, 5
Physical properties
Phase solid
Density (near r.t.) 9.78  g·cm−3
Liquid density at m.p. 10.05  g·cm−3
Melting point 544.7 K
(271.5 °C, 520.7 °F)
Boiling point 1837 K
(1564 °C, 2847 °F)
Heat of fusion 11.30  kJ·mol−1
Heat of vaporization 151  kJ·mol−1
Heat capacity (25 °C) 25.52  J·mol−1·K−1
Vapor pressure P(Pa) 1 10 100 1 k 10 k 100 k
at T(K) 941 1041 1165 1325 1538 1835

Atomic properties
Crystal structure rhombohedral
Oxidation states 3, 5
(mildly acidic oxide)
Electronegativity 2.02 (scale Pauling)
Ionization energies
(more) 1st:  703  kJ·mol−1
2nd:  1610  kJ·mol−1
3rd:  2466  kJ·mol−1
Atomic radius 160  pm
Atomic radius (calc.) 143  pm
Covalent radius 146  pm
Miscellaneous
Magnetic ordering diamagnetic
Electrical resistivity (20 °C) 1.29 µ Ω·m
Thermal conductivity (300 K) 7.97  W·m−1·K−1
Thermal expansion (25 °C) 13.4  µm·m−1·K−1
Speed of sound (thin rod) (20 °C) 1790 m/s
Young's modulus 32  GPa
Shear modulus 12  GPa
Bulk modulus 31  GPa
Poisson ratio 0.33
Mohs hardness 2.25
Brinell hardness 94.2  MPa
CAS registry number 7440-69-9
Selected isotopes
Main article: Isotopes of bismuth iso NA half-life DM DE (MeV) DP
207Bi syn 31.55 y ε, β+ 2.399 207Pb
208Bi syn 368,000 y ε, β+ 2.880 208Pb
209Bi 100% (19 ± 2) ×1018y α 205Tl

References
Bismuth (IPA: [ˈbɪzməθ]) is a chemical element that has the symbol Bi and atomic number 83. This heavy, brittle, white crystalline trivalent poor metal has a pink tinge and chemically resembles arsenic and antimony. Of all the metals, it is the most naturally diamagnetic, and only mercury has a lower thermal conductivity.

Bismuth compounds are used in cosmetics and in medical procedures. As the toxicity of lead has become more apparent in recent years, alloy uses for bismuth metal as a replacement for lead have become an increasing part of bismuth's commercial importance.

Contents [hide]
1 Notable characteristics
2 Crystals
3 History
4 Occurrence
5 Applications
6 See also
7 References
8 External links



[edit] Notable characteristics
It is a brittle metal with a pinkish hue, often occurring in its native form with an iridescent oxide tarnish showing many refractive colors from yellow to blue. Among the heavy metals, bismuth is unusual in that its toxicity is much lower than that of its neighbors in the periodic table such as lead, thallium, and antimony. No other metal is more naturally diamagnetic (as opposed to superdiamagnetic) than bismuth, and it has a high electrical resistance. Of any metal, it has the second lowest thermal conductivity and the highest Hall effect. When deposited in sufficiently thin layers on a substrate, bismuth is a semiconductor, rather than a poor metal.[1] When combusted with oxygen, bismuth burns with a blue flame and its oxide forms yellow fumes.

While bismuth was traditionally regarded as the element with the heaviest stable isotope, it had long been thought to be unstable on theoretical grounds. Not until 2003 was this demonstrated when researchers at the Institut d'Astrophysique Spatiale in Orsay, France, measured the alpha emission half-life of 209Bi to be 1.9 x 1019 years,[2] meaning that bismuth is very slightly radioactive, with a half-life over a billion times longer than the current estimated age of the universe. Due to its extraordinarily long half-life, for nearly all applications bismuth can be treated as if it is stable and non-radioactive. However, the radioactivity is of academic interest because bismuth is one of few elements whose radioactivity was suspected, and indeed theoretically predicted, before being detected in the laboratory.

Elemental bismuth is one of very few substances of which the liquid phase is denser than its solid phase (water being the best-known example). Because bismuth expands on freezing, it was long an important component of low-melting typesetting alloys which needed to expand to fill printing molds.


[edit] Crystals
Though virtually unseen in nature, high-purity bismuth can form distinctive hopper crystals. These colorful laboratory creations are typically sold to collectors. Bismuth is relatively nontoxic and has a low melting point just above 273°C, so crystals may be grown using a household stove. This carries significant risk of burns and should not generally be attempted without extensive metal-smelting experience, and the resulting crystals will tend to be disappointing when compared to lab-grown crystals.


[edit] History
Bismuth (New Latin bisemutum from German Wismuth, perhaps from weiße Masse, "white mass") was confused in early times with tin and lead due to its resemblance to those elements. Basilius Valentinus described some of its uses in 1450 . Claude François Geoffroy showed in 1753 that this metal is distinct from lead.

Artificial bismuth was commonly used in place of the actual mineral. It was made by hammering tin into thin plates, and cementing them by a mixture of white tartar, saltpeter, and arsenic, stratified in a crucible over an open fire.[3]

Bismuth was also known to the Incas and used (along with the usual copper and tin) in a special bronze alloy for knives, [2]


[edit] Occurrence
In the Earth's crust, bismuth is about twice as abundant as gold. It is not usually economical to mine it as a primary product. Rather, it is usually produced as a byproduct of the processing of other metal ores, especially lead, but also tungsten or other metal alloys.

The most important ores of bismuth are bismuthinite and bismite. In 2005, China was the top producer of bismuth with at least 40% world share followed by Mexico and Peru reports the British Geological Survey.

The average price for bismuth in 2000 was US$ 7.70 per kilogram. It is relatively cheap, since like lead (but to a much lesser extent), it is radiogenic, being formed from the natural decay of uranium and thorium (specifically, by way of neptunium-237 or uranium-233).


Bismuth output in 2005
[edit] Applications
Bismuth oxychloride is sometimes used in cosmetics. Also bismuth subnitrate and bismuth subcarbonate are used in medicine. Bismuth subsalicylate (the active ingredient in Pepto-Bismol) is used as an antidiarrheal and to treat some other gastro-intestinal diseases. Also, bismuth subgallate (the active ingredient in Devrom) is used as an internal deodorant to treat malodor from flatulence (or gas) and stool.

Some other current uses:

Many bismuth alloys have low melting points and are widely used for fire detection and suppression system safety devices.
Bismuth is used as an alloying agent in production of malleable irons.
Bismuth is finding use as a catalyst for making acrylic fibers.
A carrier for U-235 or U-233 fuel in nuclear reactors
Bismuth has also been used in solders. The fact that bismuth and many of its alloys expand slightly when they solidify make them ideal for this purpose.
Bismuth subnitrate is a component of glazes that produces an iridescent luster finish.
Bismuth telluride is an excellent thermoelectric material; it is widely used.
A replacement propellant for xenon in Hall effect thrusters
In 1997 an antibody conjugate with Bi-213, which has a 45 minute half-life, and decays with the emission of an alpha-particle, was used to treat patients with leukemia.
In 2001, Professor Barry Allen and Dr. Graeme Melville at St. George Hospital in Sydney successfully produced Bi-213 in linac experiments which involved bombarding radium with bremsstrahlung photons. This cancer research team used Bi-213 in its Targeted Alpha Therapy (TAT) program.
In the early 1990s, research began to evaluate bismuth as a nontoxic replacement for lead in various applications:

As noted above, bismuth has been used in solders; its low toxicity will be especially important for solders to be used in food processing equipment and copper water pipes.
A pigment in artist's oil paint
Ingredient in free-machining brasses for plumbing applications
Ingredient in free-cutting steels for precision machining properties
A catalyst for making acrylic fibres
In low-melting alloys used in fire detection and extinguishing systems
Ingredient in lubricating greases
Dense material for fishing sinkers
Bismuth(III) oxide, carbonate, or subnitrate in crackling microstars (dragon's eggs) in pyrotechnics
Replacement for lead in shot and bullets. The UK, U.S., and many other countries now prohibit the use of lead shot for the hunting of wetland birds, as many birds are prone to lead poisoning due to mistaken ingestion of lead (instead of small stones and grit) to aid digestion. Bismuth-tin alloy shot is one alternative that provides similar ballistic performance to lead. (Another less expensive but also poorer-performing alternative is "steel" shot, which is actually soft iron.)
Bismuth core bullets are also starting to appear for use in indoor shooting ranges, where fine particles of lead from bullets impacting the backstop can be a chronic toxic inhalant problem. Due to bismuth's crystalline nature, the bismuth bullets shatter into a non-toxic powder on impact, making recovery and recycling easy.[citation needed] The lack of malleability does, however, make bismuth unsuitable for use in expanding hunting bullets.

FN Herstal uses bismuth in the projectiles for their FN 303 less-lethal riot gun.

[edit] See also
Bismuth compounds
Bismuth minerals

[edit] References
^ Semimetal-to-semiconductor transition in bismuth thin films, C. A. Hoffman, J. R. Meyer, and F. J. Bartoli, A. Di Venere, X. J. Yi, C. L. Hou, H. C. Wang, J. B. Ketterson, and G. K. Wong, Phys. Rev. B 48, 11431 (1993) DOI:10.1103/PhysRevB.48.11431
^ Marcillac, Pierre de; Noël Coron, Gérard Dambier, Jacques Leblanc, and Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature 422: 876–878. DOI:10.1038/nature01541.
^ This article incorporates content from the 1728 Cyclopaedia, a publication in the public domain. [1]

[edit] External links
Wikimedia Commons has media related to:
BismuthLook up bismuth in
Wiktionary, the free dictionary.WebElements.com - Bismuth
"Bismuth Statistics and Information" - United States Geological Survey minerals information for bismuth
"[3]" - Laboratory growth of large crystals of Bismuth by Jan Kihle Crystal Pulling Laboratories, Norway
Bismuth breaks half-life record for alpha decay
Los Alamos National Laboratory - Bismuth
Retrieved from "http://en.wikipedia.org/wiki/Bismuth"
Categories: All articles with unsourced statements | Articles with unsourced statements since June 2007 | Bismuth | Chemical elements | Alchemical substances

No comments: